Formulation pre-screening of inhalation powders using computational atom-atom systematic search method.

نویسندگان

  • Vasuki Ramachandran
  • Darragh Murnane
  • Robert B Hammond
  • Jonathan Pickering
  • Kevin J Roberts
  • Majeed Soufian
  • Ben Forbes
  • Sara Jaffari
  • Gary P Martin
  • Elizabeth Collins
  • Klimentina Pencheva
چکیده

The synthonic modeling approach provides a molecule-centered understanding of the surface properties of crystals. It has been applied extensively to understand crystallization processes. This study aimed to investigate the functional relevance of synthonic modeling to the formulation of inhalation powders by assessing cohesivity of three active pharmaceutical ingredients (APIs, fluticasone propionate (FP), budesonide (Bud), and salbutamol base (SB)) and the commonly used excipient, α-lactose monohydrate (LMH). It is found that FP (-11.5 kcal/mol) has a higher cohesive strength than Bud (-9.9 kcal/mol) or SB (-7.8 kcal/mol). The prediction correlated directly to cohesive strength measurements using laser diffraction, where the airflow pressure required for complete dispersion (CPP) was 3.5, 2.0, and 1.0 bar for FP, Bud, and SB, respectively. The highest cohesive strength was predicted for LMH (-15.9 kcal/mol), which did not correlate with the CPP value of 2.0 bar (i.e., ranking lower than FP). High FP-LMH adhesive forces (-11.7 kcal/mol) were predicted. However, aerosolization studies revealed that the FP-LMH blends consisted of agglomerated FP particles with a large median diameter (∼4-5 μm) that were not disrupted by LMH. Modeling of the crystal and surface chemistry of LMH identified high electrostatic and H-bond components of its cohesive energy due to the presence of water and hydroxyl groups in lactose, unlike the APIs. A direct comparison of the predicted and measured cohesive balance of LMH with APIs will require a more in-depth understanding of highly hydrogen-bonded systems with respect to the synthonic engineering modeling tool, as well as the influence of agglomerate structure on surface-surface contact geometry. Overall, this research has demonstrated the possible application and relevance of synthonic engineering tools for rapid pre-screening in drug formulation and design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation

Density-functional theory (DFT) has provided insights into various materials properties in the recent decade. However, its computational complexity has made other aspects, especially those involving defects, beyond reach. Here, we present a method that enables the study of multi-million atom clusters using orbital-free density-functional theory (OFDFT) with no spurious physics or restrictions o...

متن کامل

Electronic Structure Calculations at Macroscopic Scales using Orbital-free DFT

In this chapter we provide an overview of the recently developed coarse-graining technique for orbital-free density functional theory that enables electronic structure calculations on multi-million atoms. The key ideas involved are: (i) a local real-space formulation of orbital-free density functional theory; (ii) a finite element discretization of the formulation; (iii) a systematic means of a...

متن کامل

A rational approach to heavy-atom derivative screening

Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searc...

متن کامل

Quantum-Inspired Genetic Algorithm Based Time-Frequency Atom Decomposition

The main problem of time-frequency atom decomposition (TFAD) lies in an extremely high computational load. This paper presents a fast implementation method based on quantum-inspired genetic algorithm (QGA). Instead of finding the optimal atom in greedy implementation algorithm, this method is to search a satisfactory atom in every iteration of TFAD. Making full use of QGA’s advantages such as g...

متن کامل

Numerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet

This paper deals with the Legendre wavelet (LW) collocation method for the numerical solution of the radial Schrodinger equation for hydrogen atom. Energy eigenvalues for the hydrogen bound system is derived -13.6 eV. Numerical results of the ground state modes of wave function for the hydrogen R(r) or the electron probability density function, has been presented. The numerical results ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2015